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An n-th order steep descent technique for determining the lowest eigenvector of the 
matrix equation, 

[H - ES] c = 0, 

is investigated. The convergence is suited to the molecular wavefunction configuration 
interaction problem, in particular where bases are used which may be nearly overcomplete 
in certain regions of the vector space. ‘The algorithm is also suited to computer solutions 
for large matrices, since it can be broken down to apply to blocks of convenient dimen- 
sions which may be treated iteratively and separately. 

The solution for the lowest eigenvector c and eigenvalue E of the matrix equation, 

[Hij - ESii][Cj] = 0, (1) 

is of considerable practical importance in many branches of physics, and has 
been the subject of much study [l, 21. It arises in the calculation of molecular 
wavefunctions by configuration interaction where 

are the matrix elements of the Hamiltonian and unity for the many electron basis 
functions & , E is the total electronic Energy of the molecule, and the integral is 
taken over all space and spin variables. 

Very efficient procedures, such as those of Lowdin [3] and Nesbet [4] can be 
used for large matrices of this type. Generally effective methods for computer 
solution of Eq. (1) with large matrices, (which may have orders of several thousands) 
involve an iterative approach. An infinite sequence of operations, which can be 
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performed separately on different parts of the matrix, is truncated after a certain 
degree of self-consistency has been achieved. 

When near-linear dependences exist among the matrix elements, 

and 
i#k 

(2) 

the convergence of iterative procedures usually becomes extremely slow. Such 
approximate equalities arise from the use of “nearly over-complete” bases [3] 
which may be derived from integral transform wavefunctions 151, high-order 
different orbitals for different spins wavefunctions, complete multi-configuration 
interaction [6] and so on. Indeed all calculations of molecular wavefunctions 
using combinations of atomic bases centered at different points in space are liable 
to such over-complete behaviour. 

Any method which relies on linear variation of the vector components will 
converge slowly when the approximate equalities [Eqs. (2)] hold. The characteristic 
flatness of such surfaces is not suited to a first-order steep descent such as that of 
McWeeny [7], and Hestenes and Karush [8], though these can be efficient in other 
contexts. The present technique which relies on higher-order derivatives of the 
energy with respect to variation in the components of the vector may sometimes be 
of use in speeding convergence. It is an iterative procedure based on an integral 
variational principle whose more general application is considered elsewhere 191. 
The present approach has points of contact with previous work [3, 4, 7, 81. 

METHOD 

The expectation value E of the energy for vector c with components ca defines 
a smooth, n-dimensional surface: 

The components cy) of the ground-state eigenvector c(f) of Eq. (1) give the coor- 
dinates of the minimum of this surface. Let c(O) be some crude zero-order 
approximation to the eigenvector. Consider all possible smooth paths which 
may pass through the surface at c to). The one which descends the most steeply 
at each point from c(O) to c(f) may be defined by a functional relationship. For an 
element of the path of any arbitrary length the line integral of the energy is stationary 
and a minimum. 
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A smooth path through c(O) may be expanded in terms of its derivatives with 
respect to a scalar progress variable s: 

c(s) = c(O) + df’s + cwy2 + -‘- . (4) 

The energy expectation value along any such path can also be expanded in terms 
of its derivatives at the origin: 

E(s) = E’O’ + E’l’s + Ec2’s2/2 + *-a . (5) 

If an element of such a path extending to equal distances L3s on either side of the 
origin is defined, the line integral may be expanded in terms of the euen derivatives 
Et2$) alone. For an infinitesimal As the value of the line integral is dominated 
by E(O). For larger As there are adjacent ranges whose contributions to the line 
integral are dominated by Ef2), EC*) and so on. Since the functional relationship 
is true for any arbitrary length separate minimum principles must govern successive 
even-order energy derivatives at the origin. 

If Eqs. (4) and (5) are substituted into Eq. (3) and the denominator is expanded 
as a power series the equations for E w for successive orders t can be separated. 
Applying the conditions: 

&2t’/&fJ = 0 , k = 1, 2,..., II 

yields sets of linear inhomogeneous simultaneous equations which appear in 
matrix form, 

&‘t’ = p(t). (6) 

These may be solved successively for 2 = 1,2,... . The elements of B are 

(7) 

The elements of the first- and second-order /?L$) are] 

1 The bigher order B(r) can be derived from the general expressions given in reference [9], 
J?q. (20) by setting H$) = S$$ = 0, f > 1. 
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and 

(9) 

The rank of the matrix B is one greater than its order. One coefficient, preferably 
the coefficient of the most important component, can be arbitrarily set equal to 1 
as an alternative to the normalization condition. The solutions c are then obtained 
by inverting a (n - 1)-dimensional matrix in the usual manner [lo], (or by using 
any other suitable technique). The same inverted matrix can be used to obtain c(t) 
for all orders. 

The vectors c(O), co) -.* cc*) to some low-order V, which might conveniently 
be 1 or 2, provide the basis of the form of Eq. (4) which converges most rapidly 
on the eigenvalue of Eq. (1). 

All that is needed now is the solution to the (v + I)-order eigenvalue equation: 

det 1 Kii - ci?Lij 1 = 0, (10) 
where 

Kij = &-@ 
and 

L,. = ,(i)fQ 23 . 

Let the (V + I)-component eigenvector of Eq. (10) be CL. Then the new trial vector 
in Eq. (3) is 

C 40) _ - $ %+P (11) 

with expectation value 8’. That is the eigenvector of Eq. (10) provides the new trial 
vector for the next iteration with Eq. (3). 
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Provided that the initial trial vector c(O) has an expectation value of the energy 
at least as low as that for any of the n vectors with components 

Jo) = ai, ) 1 

the result will converge on the ground state eigenvalue. Some care may occasionally 
be necessary in the selection of the initial trial vector c(O). In particular the eigen- 
vector of the submatrix of order n - 1 would lead to a singularity. 

The scheme can be applied equally well to a subspace of order m of the original 
n-dimensional space in order to break up the solution to a large eigenvalue equation. 
In particular setting m = 2 and u = 1 leads to the same convergence as Nesbet’s 
method; indeed the same equations are solved. For larger values of m and v 
a faster convergence would be expected, since the trial vector responds to groups of 
elements simultaneously and to higher order derivatives of E with respect to change 
in the vector. 

SPECIMEN RESULTS 

The method was tested on a system where progressive stages leading in the limit 
to 100 % over-completeness can be compared. A wavefunction for the HZ+ molecule 
ion was set up using Gaussian orbitals. Huzinaga’s optimal lo-term set of orbitals 
[ 111 was based at each atomic centre and also at the centre of the bond. Complete 
configuration interaction among all l&+ functions formed from the 30 orbital 
basis leads to 20 different configurations. In the limit where the internuclear 
distance R -+ 0 obviously only 10 of these are independent. Table I compares 
the results of treatments using Nesbet’s and McWeeny’s methods with the present 
algorithm using the full vector space in each case. 

Convergence was assumed to have been achieved only when three criteria had 
been satisfied: 

1. SC the length of the vector joining the normalized vector from the present 
iteration to that for the previous one was less than Ed . 

2. The magnitude of the residual r 

r = Hc - ESc 

for the final normalized vector c was less than Ed . 
3. The energy change between cycles was less than Ed . 

It is clear from the figures that even for the largest internuclear distances studied 
McWeeny and Nesbet’s methods are not well suited to this nonorthogonal, 
overcomplete problem. For each internuclear distance substantial savings in time 
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TABLE I 

Number of Iterations for Convergence of 20 Configuration “Overcomplete” Wavefunction for H%+ 
The convergence criteria used were pi = E% = 5 x 10-O, Ed = 5 x 10-O. (N.B. There are certainly 
more sophisticated ways than those used here of applying McWeeny and Nesbet’s algorithms 

using steep descent partans.) 

Electronic Energy 
(t = 1,2, or 3) Proposed Method 

R a.u. t = 1 t =2 t= 3 McWeeny Nesbet” 

8.0 

4.0 

2.0 

1.5 

1.0 

0.5” 

0.25b -1.898541 50 5 5 
0.15d -1.955701 5 

-0.627365 71 4 4 

-0.795706 45 6 6 

-1.102434 62 3” 3” 

- 1.248869 61 3” 3” 

-1.451732 

-1.734971 

66 3” 3” 

52 3” 3” 

>4000 
(E = -0.626) 

>4000 
(E = -0.792) 

>2000 
(E = - 1.097) 

>3000 
(E = -1.246) 

>2000 
(E = -1.449) 

>3000 
(E = -1.733) 

304 

1049 

>2000 
(E = -1.102433) 

>3000 
(E = -1.248869) 

>2000 
(E = -1.451731) 

>3000 
(E = -1.734971) 

a Actually converged after two iterations, the third merely ensured convergence of c and E. 
) Convergence criteria reduced to Q = ca = 5 x 1O-6, Q = 5 x lo-‘. 
o Where convergence was not achieved it was most apparent in the residual r. 
d Convergence criteria reduced to c1 = Ed = 5 x 10M4, Q = 5 x 1O-6. Convergence of the vector 

was not certain here. 

were obtained using the present algorithm though no direct comparison is possible 
since no care was taken to program with optimal efficiency. The time saving seems 
to be by a factor of at least 100 for R < 2 au. however. Prior orthogonalisation of 
the basis however would certainly have improved the performance of these 
alternative methods, but at the expense of a cumbersome and time consuming step. 

It seems considerably more care is necessary to ensure convergence of the residual 
to the accuracy used than that needed to converge the vector and energy. 

The figures of Table I indicate that little is to be gained by using a third-order 
steep descent over that achieved using a second-order descent. It is possible that 
the range of validity of the inverse expansion was exceeded. For t = 1 however 
a considerably larger number of iterations were required. 

Application to the more difficult problem of the optimisation of many nonlinear 
parameters is in progress. 
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